Genetic Algorithm Based Recurrent Fuzzy Neural Network Modeling of Chemical Processes

نویسندگان

  • Jili Tao
  • Ning Wang
  • Xuejun Wang
چکیده

A genetic algorithm (GA) based recurrent fuzzy neural network modeling method for dynamic nonlinear chemical process is presented. The dynamic recurrent fuzzy neural network (RFNN) is constructed in terms of Takagi-Sugeno fuzzy model. The consequent part is comprised of the dynamic neurons with output feedback. The number and the parameters of membership functions in the premise part are optimized by the GA considering both the approximation capability and structure complexity of RFNN. The proposed dynamic model is applied to a PH neutralization process and the advantages of the resulting model are demonstrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Network Meta-Modeling of Steam Assisted Gravity Drainage Oil Recovery Processes

Production of highly viscous tar sand bitumen using Steam Assisted Gravity Drainage (SAGD) with a pair of horizontal wells has advantages over conventional steam flooding. This paper explores the use of Artificial Neural Networks (ANNs) as an alternative to the traditional SAGD simulation approach. Feed forward, multi-layered neural network meta-models are trained through the Back-...

متن کامل

Modeling and Optimization of β-Cyclodextrin Production by Bacillus licheniformis using Artiï‌cial Neural Network and Genetic Algorithm

Background: The complexity of the fermentation processes is mainly due to the complex nature of the biological systems which follow the life in a non-linear manner. Joined performance of artificial neural network (ANN) and genetic algorithm (GA) in finding optimal solutions in experimentation has found to be superior compared to the statistical methods. Range of applications of β-cyclodextrin (...

متن کامل

Optimization of Plastic Injection Molding Process by Combination of Artificial Neural Network and Genetic Algorithm

Injection molding is one of the most important and common plastic formation methods. Combination of modeling tools and optimization algorithms can be used in order to determine optimum process conditions for the injection molding of a special part. Because of the complication of the injection molding process and multiplicity of parameters and their interactive effects on one another, analytical...

متن کامل

Forecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)

The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...

متن کامل

A Comparison of Regression and Neural Network Based for Multiple Response Optimization in a Real Case Study of Gasoline Production Process

Most of existing researches for multi response optimization are based on regression analysis. However, the artificial neural network can be applied for the problem. In this paper, two approaches are proposed by consideration of both methods. In the first approach, regression model of the controllable factors and S/N ratio of each response has been achieved, then a fuzzy programming has been app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. UCS

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2007